Social network analysis of lexical diffusion

Investigating the spread of new words on Twitter

Quirin Würschinger

LMU München

ICAME 2019, Neuchâtel
Workshop ‘Corpus approaches to social media’

1 May, 2019
Outline

- Theoretical background
 - lexical innovation
 - diffusion
- Twitter approach
 - usage intensity
 - social network analysis
 - comparative analyses
What are ‘lexical innovations’?

nonce formations ICAMERs, Neuchâtelgate

↓

neologisms microflat, burquini, bediquette, biobag, poppygate, emojinal, toxic, alt-right, bromance, Brexit, selfie, smartphone

↓

conventional lexemes phone, internet, laptop
The S-curve model of diffusion

Early stages
- prestige of coiner and early adopters
- dense networks (J. Milroy and L. Milroy 1985)
- strong ties

Later stages
- diffusion via weak ties (Granovetter 1977)
How do new words diffuse?

Theoretical framework: The EC Model (Schmid forthc.)

Diffusion:

“Linking the three aspects of speakers, cotexts, and contexts, I define diffusion as a process that brings about a change in the number of **speakers and communities** who conform to a regularity of co-semiotic behaviour and a change in the types of **cotexts and contexts** in which they conform to it.”
Diffusion of lexical innovations

Research questions – two dimensions of diffusion:

1. How do neologisms diffuse across usage contexts?
 - increasing usage intensity (Stefanowitsch and Flach 2017)
 - increasing diversity in text types and semantic domains

2. How do neologisms diffuse across the speech community?
 - increasing number of speakers
 - increasing diversity of speaker communities
Diffusion across usage contexts

Previous empirical studies

- case studies: Hohenhaus 2006
- traditional corpora: Elsen 2004
- web corpora: Gérard 2017; Cartier 2017; Davies 2013; Kerremans, Stegmayr and Schmid 2012
- social media corpora: Grieve, Nini and Guo 2016

→ main focus: usage intensity
Diffusion across the speech community

Using Twitter data to study diffusion

- historical data
- informal and creative language use
- social media as a driving force in lexical innovation
- beyond usage frequency:
 - speaker information
 - sociolinguistic dynamics of diffusion
Collecting and processing Twitter data

Data collection

- Twitter’s APIs
- scraping: twint

Data overview

- neologisms: 87
- timespan: 2006–2019
- number of tweets: 32 Mill.
- number of unique users: 13 Mill.
Focus of analysis

- degree of diffusion
 - usage intensity
 - social networks of diffusion
- diffusion stages
Social network analysis of lexical diffusion

- Degrees of diffusion
- Usage intensity

Advanced diffusion: *shareable*
Unsuccessful diffusion: *microflat*
Topical diffusion: *poppygate*\(^1\)

\(^1\) *poppygate*: scandals around the ritual of wearing artificial flowers for Remembrance Day
Limited diffusion: *alt-right*²

²*alt-right:* short for *Alternative Right* after White Supremacist Richard Spencer
Limited diffusion: \textit{alt-left}

![Graph showing limited diffusion of alt-left with tweets per month from 2016 to 2019.](image)
Degrees of diffusion – Clusters

unsuccessful: *microflat*

limited: *alt-left*

topical: *poppygate*

advanced: *shareable*
Corpus examples

use of *alt-left* in 2016

The 'Alt-Left' (Black Lives Matter, Islam apologists) is far more racist, intolerant and violent than the 'Alt-Right'. Fact.

1.116 Retweets 2.229 „Gefällt mir“-Angaben

use of *alt-left* in 2017

They really hate it when we use the term "alt-left".

It would be a shame if this got 10,000 retweets. 😞

03:43 - 18. Aug. 2017

65.420 Retweets 50.793 „Gefällt mir“-Angaben
Social network analysis

Constructing the network

- Extracting nodes and edges (tidygraph, igraph):
 - Based on: mentions, retweets
 - Data format: from text, from columns (twint)

- Subsetting data: 1,000 interactions per
 1. First stage
 2. Average usage intensity
 3. Maximum usage intensity
 4. Last stage

3 all analyses and visualizations were done in R
Network structure4

Nodes

- node centrality: in-degree
- node positioning: Kamada-Kawai algorithm (\textit{ggraph})

Ties

- directionality: directed
- weights: degree

Communities

- clustering: edge betweenness algorithm
- modularity: fraction of ties within vs. between sub-communities

4all metrics and visualizations rely on \textit{tidygraph} and \textit{igraph}
Social network analysis of lexical diffusion

- Degrees of diffusion
- Social network analysis

microflat

subset: last (2018-11-14--2011-01-06)
Social network analysis of lexical diffusion

- Degrees of diffusion
- Social network analysis

shareable

shareable
subset: last (2018-12-31--2018-12-14)
alt-right

subset: last (2018-09-10--2018-09-09)
Social network analysis of lexical diffusion

- Degrees of diffusion
- Social network analysis

alt-left

alt-left
subset: last (2018-12-30--2018-12-19)
microflat
subset: last (2018-11-14--2011-01-06)

alt-right
subset: last (2018-09-10--2018-09-09)

alt-left
subset: last (2018-12-30--2018-12-19)

shareable
subset: last (2018-12-31--2018-12-14)
Comparison: metrics

number of communities in last 1,000 interactions

<table>
<thead>
<tr>
<th>Subcommunities / 1,000 Interactions</th>
<th>alt-left</th>
<th>poppygate</th>
<th>alt-right</th>
<th>shareable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

LEMMA
- alt-left
- alt-right
- poppygate
- shareable
Stages of diffusion
First stage

shareable
subset: first (2007-07-19--2009-08-02)
Second stage

shareable
subset: mean (2011-11-02--2011-11-28)
Third stage

shareable

subset: max (2016-03-02–2016-03-18)
Social network analysis of lexical diffusion

- Stages of diffusion
 - shareable

Fourth stage

shareable

subset: last (2018-12-31--2018-12-14)
Social network analysis of lexical diffusion

Stages of diffusion

shareable

All stages

shareable

shareable

shareable
subset: max (2016-03-02–2016-03-18)

shareable
subset: last (2018-12-31–2018-12-14)
First stage

alt-left
subset: first (2008-06-19--2016-08-31)
Second stage

alt-left

subset: mean (2016-11-02--2016-11-15)
Third stage

alt-left

subset: max (2017-08-02--2017-08-03)
Fourth stage

alt-left

subset: last (2018-12-30--2018-12-19)
Social network analysis of lexical diffusion

- Stages of diffusion

alt-left

All stages

alt-left
subset: first (2008-06-19--2016-08-31)

alt-left
subset: mean (2016-11-02--2016-11-15)

alt-left
subset: max (2017-08-02--2017-08-03)

alt-left
subset: last (2018-12-30--2018-12-19)
Comparison of diffusion stages across lexemes

alt−left
alt−right
shareable
COMM_first
COMM_mean
COMM_max
COMM_last
Comparison of communities across all lexemes

e.g. covfefe, dotard, birther, Pizzagate

e.g. animoji, detweet, man bun, monthversary
Users vs. usage

e.g. Brexit, blockchain, smartwatch

e.g. tweeter, bromance, man bun, ghosting
Conclusion: zooming out again . . .

- Social media data make it possible to go beyond usage intensity to study the sociolinguistic dynamics of diffusion.
- This is particularly important for cases of limited social diffusion.
- Dense networks promote diffusion in earlier stages of diffusion.
- Weak ties are crucial for advanced diffusion to new parts of the speech community at later stages.
Discussion

Legal issues

- scraping
- data vendors
- Twitter authorization
- user privacy
Social network analysis of lexical diffusion

Thanks for your attention!
The NeoCrawler
(Kerremans, Stegmayr and Schmid 2012)

Monitoring diffusion *across usage contexts* on the WWW

- sample: \(\approx 1,000\) candidates
- time window: 2011–2018
- corpus: \(\approx 800,000\) pages
- usage contexts: private forums, blogs, newspaper websites etc.
Increase in speakers for *shareable*
Increase in speakers for *alt-left*
The role of weak ties
Diffusion of *gegenpressing*

![Graph showing the diffusion of gegenpressing from 2014 to 2018.](image)

- The graph plots the number of tweets per month against time.
- The x-axis represents the years 2014 to 2018.
- The y-axis represents the number of tweets, with a range from 0 to 800.
- The data shows a peak around 2016, followed by fluctuations until 2018.
Social network analysis of lexical diffusion

Social network of **gegenpressing**

gegenpressing